New Integer Programming Formulations for the
Stable Exchange Problem*

Virginia Costa!, Xenia Klimentova!, Péter Bir6?, Ana Viana'3, and Joao
Pedro Pedroso!#

! INESC TEC, Porto, Portugal
2 Institute of Economics, Hungarian Academy of Sciences, Budapest, Hungary
3 ISEP - School of Engineering, Polytechnic of Porto, Porto, Portugal
4 Faculdade de Ciéncias, Universidade do Porto, Porto, Portugal
xenia.klimentova@inesctec.pt

Abstract. In the stable exchange problem the agents are endowed with
a single good, e.g. a house or a kidney donor, and they have preferences
over the others’ endowments. The problem is to find an exchange of goods
such that no group of agents can block the solution in an exchange cycle.
An exchange is called stable if there is no blocking cycle where all the
agents involved strictly prefer the new solution. An exchange is strongly
stable if no weakly blocking cycle exists, where at least one agent im-
proves and neither of them gets a worse allocation. When the lengths of
the exchange cycles is not limited then a stable solution always exists and
can be found efficiently by Gale’s Top Trading Cycle algorithm. However,
when the length of the exchange cycles is limited then a (strongly) stable
solution may not exist and the problem of deciding the existence is NP-
hard. This setting is particularly relevant in kidney exchange programs,
where the length of exchange cycles is limited due to the simultaneity of
the transplantations, e.g. the maximum length of the cycles is 3 in the
UK and 4 in the Netherlands. In this work we develop several integer
programming formulations to solve the (strongly) stable exchange prob-
lem, which is a novel approach for this solution concept. We compare the
effectiveness of these models by conducting computational experiments
on generated kidney exchange data.

Keywords: stable matching - integer programming - k-way exchange.

* This work is financed by the ERDF FEuropean Regional Development Fund through
the Operational Programme for Competitiveness and Internationalisation - COM-
PETE 2020 Programme, and by National Funds through the Portuguese funding
agency, FCT - Fundagdo para a Ciéncia e a Tecnologia, within project "mKEP -
Models and optimisation algorithms for multicountry kidney exchange programs”
(POCI-01-0145-FEDER-016677), by FCT project SFRH/BPD/101134/2014 and by
COST Action CA15210 ENCKEP, supported by COST (European Cooperation in
Science and Technology) — http://www.cost.eu/. Biré is supported by the Hungar-
ian Academy of Sciences under its Momentum Programme (LP2016-3/2018) and
Cooperation of Excellences Grant (KEP-6/2018), and by the Hungarian Scientific
Research Fund — OTKA (no. K129086).

26

1 Introduction

Barter exchange markets — such as kidney exchange programs — can be repre-
sented as directed graphs where agents are vertices and arcs indicate exchange
opportunities. A solution consists of a set of disjoint cycles. In this paper we
consider the case where agents have preferences, represented by ranks on outgo-
ing arcs. An exchange that contains no cycle with length more than k is a k-way
exchange. A k-way stable exchange is a k-way exchange such that there is no
cycle where all the vertices would be better off, according to their preferences,
than in the current solution. When strict preference in the blocking cycle is re-
quired only for one vertex then we speak about strongly stable exchanges. The
problem of deciding existence is NP-hard for both problems [2,5]. In this work,
we present three novel integer programming formulations for these problems,
which is a novel approach in the literature. Preliminary computational results
highlight the efficiency of one formulation over the others.

1.1 Notation and definitions

Consider a digraph G = (V, A), where V' is the set of vertices and A is the set of
arcs. Define also the preference list of i € V as theset 6(i) = {j | (4,j) € A} CV
where there is a strict preference order on its elements. Each j € 6(4) is ranked
with value r € {1,...,]6(:)|}. For j,j" € §(i) ranked with r, ', respectively, we
say that vertex i prefers j to 7/, and denote by j <; j/, if v’ > 7.

Within this context, a matching M C A is a set of pairs (i,j) where i € V
and j € 6(¢). In addition, a vertex always prefers to be matched to any of the
elements in its preference list, rather than be unmatched. A vertex i is unmatched
if there is no vertex j such that (¢,) € M. Let C be a set of cycles in G of length
at most k. We denote by V(c) and A(c) the set of vertices and arcs, respectively,
that are involved in a cycle ¢ € C. We say that ¢ € M if, and only if, A(c) C M.
Let |c| denote the length of cycle ¢, i.e., |¢| = |[V(c)| = |A(c)|. Let C(i) C C
be the set of cycles that contain vertex i. We say that vertex ¢ prefers cycle
¢ € C(i) over cycle ¢ € C(i), and denote by ¢ <; ¢, if for (i,j) € A(c) and
(i,5") € A(c), j <; j Vertex i is indifferent between cycles ¢ and ¢ if there
exists a vertex j such that (i,7) € A(c) N A(¢), ie., (4,7) is both in ¢ and ¢’
Finally, ¢ weakly prefers c to ¢’ if it prefers ¢ to ¢ or it is indifferent between
them. We define the Stable (Strongly Stable) Exchange Problem as the problem
of finding in G a vertex-disjoint packing of directed cycles with length at most k
that corresponds to a stable (strongly stable) matching. The definitions of stable
and strongly stable matchings [2, 5] are provided below.

Definition 1. A blocking cycle ¢ ¢ M is a cycle such that every vertex i in V(c)
is either unmatched in M or prefers ¢ to ¢/, where ¢’ € C(i) N M. A matching
M is called stable if there is no blocking cycle ¢ ¢ M.

Definition 2. A weakly blocking cycle is a cycle ¢ ¢ M such that for every i €
V(e), i is either unmatched in M or weakly prefers ¢ to ¢/, where ¢’ € C(i) N M,
with strict preference for at least one vertex. A matching M is called strongly
stable if there is no weakly blocking cycle ¢ ¢ M.

27

2 Integer Programming Formulations

The Stable Exchange Problem can be seen as a optimization problem. In what
follows we propose three integer programming formulations for it.

2.1 Stable Cycle Formulation

For each pair (i,c), ¢ € V, ¢ € C(i) we define two sets of cycles: B; . = {¢ €
C(i),¢ # c: ¢ =<; ¢}, which is the set of cycles that are different from ¢ and better
or equally preferable for ¢ than ¢, and S; . = {¢ € C(i) : ¢ <; ¢}, which is the
set of cycles that are strictly better for vertex i than cycle c¢. Consider vector

x = (1,...,2)¢|) of variables such that z. = 1 if all arcs in A(c) are in M, 0
otherwise. The following set of constraints will define a stable matching M:
> oz<1 VieV (1)
c:ieV(c)
T+ Z zs > 1, Ve eC, (2)
s€U;ev (o) Bliso)
z. € {0,1} Ve e C, (3)

Constraints (1) guarantee that M is a set of disjoint cycles. Constraints (2) mean
that either ¢ € M, or, for some vertex ¢ € V(c), there exists a cycle ¢’ € B(i,c)
such that ¢ € V() and ¢ <; ¢. For a strongly stable matching, constraints (2)
are replaced by:
Te+ >z >1vceec, (4)
s€Uiev (o) S350

Constraints (4) guarantee that either ¢ is in the matching, or otherwise one of
its vertices is matched in a cycle strictly better than c.

The objective function considered maximizes the maximum number of cycles
in M and is described as follows:

F@) =Y I a.. (5)
c:ceC
2.2 Stable Edge Formulation

To define the stable edge formulation, we depart from the edge formulation in
[1], where y; ; is a binary variable denoting whether arc (4, j) is included in
the solution, or not. A feasible solution with cycles of length at most k can be

formalized as follows:
> yi— > v =0 VieV (6)

J:(Ji)EA J:(i,j)€A
> oy <1 VieV (7)
j:(i,5)€EA
Z Yi,j < k—1 Vp eP. (8)
(i,.9)€A(p)

28

where P is a set of all non-cyclic paths p in G with k arcs, and A(p) is the set
of arcs of GG in p. Note that sub-cycles with more than k arcs are removed from
the set of feasible solutions by constraints (8). To achieve stability, according to
definition 1, we introduce the following set of constraints:

S lwiat Y vie| 21, Ve e C. 9)

(1,5)€A(c) mir<ij

Strong stability can be achieved by replacing inequalities (9) by the following
set of constraints:

LN D D R 7 S N T g | VeecC. (10)

(i,§)EA(c) rir<ij (,7)€A(c)

The inequality is satisfied for cycle ¢ by the first term if there is an agent strictly
preferring her matching in the solution to what she would receive in c. The
second term ensures that a cycle already in the solution cannot be a blocking
cycle.
Since the sum of all binary variables y; ; is equal to | M|, the objective func-
tion can be written as:
Fy) = Z Yij- (11)

(i,J)€A

Note that, if the feasibility constraints from (6) to (8) and the stability con-
straints (9) or strong stability constrains (10) are satisfied, we obtain the maxi-
mum number of cycles in M by maximizing F'(y) in (11).

2.3 Stable Cycle-Edge Formulation

In the stable (strongly stable) cycle-edge formulation, we use the integer variables
of the two formulations above in a consistent way. That is, for every cycle ¢ € C,
we require that z. = 1 if and only if y; ; = 1 for every (i,j) € A(c). This
correspondence can be achieved by the basic feasibility cycle-constraints (1) and
edge-constraints (6), and by adding the following three sets of inequalities:

le| - 2. < Z Yij, Ve €C, (12)
(,5)€A(c)
Z Yij — lef +1 <, Veel, (13)
(,5)€A(c)
Y owig< Y wVieV (14)
Ji(i,j)€A c:ieV(c)

Stability and strong stability are assured by constraints (9) and (10), respec-
tively. Both (5) and (11) can be used as objective functions.

29

Table 1. Stable exchange problem formulations: stable cycle formulation (SCF), stable
edge formulation (SEF) and stable cycle-edge formulation (SCEF).

Instances

SEF

SCF SCEF

NI i1 k| rows [€9U™| Nonzeros t‘r’nag'(’;? "?':‘E'!V(es’) Rows | Columns| Non-zeros ';I‘r’:g'(’g lﬁﬁé"g} Rows |Columns| Non-zeros ';I‘r‘::'(’;‘j‘ ‘ﬁ:’é"(es’)
37 3,584 3 57 37 550 0.00 0.00 3,681 165 11,617 0.0274 | 0.03 189 202 1,295 0.00 0.00

30| 165 153 17,477 4 177 153 14,016 0.01 0.02 17,690 165 72,772 0.1509 | 0.15 541 318 5,724 0.01 0.01
269 73,636 5 294 269 51,515 0.04 0.07 73,965 165 369,782 0.7135 | 0.69 890 434 10,913 0.01 0.02

584 82,009 3 632 584 88,616 0.05 0.14 82,693 617 265,292 0.60 116 1,900 1,201 27,089 0.03 0.06

50| 617 | 5,236 951,322 4| 5284 5,236 10,188,648 5.80 | 126.70 | 956,658 617 4,028,087 7.25 49.64 15,856 5,853 317,803 0.23 156
38,591 | 11,004,062 (5| 38,639 | 38,591 | 794,566,412 | 525.10 | n.m. (11,042,753 617 56,920,039 | 89.02 |926.14 | 115,921 | 39,208 | 2,852,329 | 1.81 24.27

611 | 174480 [3| e62 | 611 | 80809 | 004 | 019 | 175231 | 1,135 | sese67 | 131 | 516 | 2019 | 1746 | 33321 | 005 | 013

70{1135| 6,700 | 2135151 |4 6753 | 6700 | 14035100 | 7.81 | 15048 2141991 | 1,135 | 8876487 | 1588 | 19183 | 20288 | 7,835 | 458502 | 036 | 570
48.762| 26,135,720 |5| 48,815 | 48,762 1,002.827,519| 721.96 | nm. |26,184,622| 1135 [133,510,623(220.04 [2061.98| 146,474 | 49,897 | 4081818 | 282 | 60.31

3214 | 884802 |3| 3298 | 3214 | 1846921 | 104 | 1392 | 888,196 | 2,063 | 2820076 | 591 |133.75| 9904 | 5277 | 218618 | 021 | 0.0

90(2063| 49,386 | 18,407,917 (4| 49,471 | 49,386 | 687,653,906 | 406.07 | n.m. (18,457,483| 2,063 |77,174,437 | 141.18 (1414.87| 148,421 | 51,449 | 4,440,627 | 3.46 51.14
710,726(382,999,769 5| n.m. nm. nm. nm. nm. nm. nm. nm. nm. n.m. |2,132,441(712,789(78,912,742| 52.86 [1061.07

Table 2. Strongly stable exchange problem formulations: strongly stable cycle formu-
lation (SSCF), strongly stable edge formulation (SSEF) and strongly stable cycle-edge
formulation (SSCEF).

Instances

SSEF

SSCF SSCEF

nl A el 12l k| Rows |Columns| Non-zeros ';I‘r’"a:'('g lls;"év(es’) Rows |Columns| Non-zeros ';I‘r’:‘:'('g “s"?é"fs") Rows C°"S‘"‘" Non-zeros ';I‘r"?g'('g “s"?évg)
37 3584 [3| s7 | a7 490 000 | 000 | 3681 | 165 | 11617 | 002 | 000 | 189 | 202 | 1205 | 000 | 0.00

30| 165| 153 | 17477 4| 177 | 153 11,081 | 001 | 000 | 17,600 | 165 | 72772 | 009 | 002 | 541 | 318 | 5724 | 001 | 000
269 | 73636 |5| 204 | 269 20684 | 002 | 001 | 73965 | 165 | 369782 | 041 | 020 | 890 | 43¢ | 10913 | 001 | 000

584 | 82009 |3| 632 | 584 81497 | 005 | 002 | 82693 | 617 | 265202 | 040 | 009 | 1900 | 1201 | 27089 | 003 | 001

50| 617 | 5236 | 951322 |4| 5284 | 5236 | 9203007 | 520 | 360 | 956658 | 617 | 4028087 | 458 | 187 | 15856 | 5853 | 317803 | 0.23 | 0.12
38,591 | 11,004,062 |5| 38,639 | 38,591 | 725,505,674 | 437.41 |385.20| 11,042,753 | 617 | 56,920,039 | 56.87 | 28.57 | 115921 | 39,208 | 2,852,320 | 185 | 1.38

611 | 174480 |3| e62 | 611 74205 | 004 | 002 | 175231 | 1135 | 548667 | 084 | 023 | 2019 | 1746 | 33321 | 005 | 0.02

701135 6,700 | 2135151 |4| 6,753 | 6,700 | 12928785 | 7.01 | 509 | 2141901 | 1135 | 8876487 | 1049 | 445 | 20288 | 7.835 | 458502 | 0.37 | 036
48,762 | 26,135,720 |5| 48,815 | 48,762 |1,001,482,550| 610.08 | n.m. |26,184,622 | 1,135 |133,510,623(134.24 | 67.56 | 146,474 | 29,807 | 4081818 | 281 | 356

3214 | ssagoz |3 3208 | 3214 | 1765803 | 096 | 061 | 888196 | 2063 | 2820076 | 395 | 161 | 9904 | 5277 | 218618 | 023 | 025

90|2063| 49,386 | 18,407,917 |4| 49,471 | 49,386 | 659,470,242 | 389.51 | 341.85 | 18,457,483 | 2,063 | 77,174,437 | 0175 | 4411 | 148,421 |51.449 | 4,440,627 | 335 | 597
710,726 382,999,769 5| n.m. | n.m. nm. am [am | nmo | nm nm. | nm | nm |2132441|712,780| 78,912,742 | 53.14 | 10428

Computational Experiments

In this section, we compare the proposed formulations in terms of time needed
to find a solution, time needed to load the coefficient matrix associated with
each formulation (loading time) and the length of that matrix (number of rows,
columns and non-zeros elements). We consider four instances from the literature
[3], with 30, 50, 70 and 90 vertices (n), and consider that the maximum length
of cycles (k) allowed ranges from 3 to 5. We used C++ language and GUROBI
library [4], with default options, as integer programming solver. Tests were ex-
ecuted in a computer with 12 cores Intel(R) Xeon(R) CPU X5675/3.07GHz,
50GB of RAM memory, Ubuntu 16.04.3 LTS operation system and g++ ver-
sion 5.4.0. Preliminary tests on the (Strongly) Stable Cycle-Edge Formulation
(SCEF and SSCEF), showed that by using (11) as objective function, the model
was more efficient. Therefore, for the two formulations above, we only report
results obtained when this objective was considered.

30

In Tables 1 and 2, |C| and |P| are the number of cycles of length at most
k and the number of non-cyclic paths with k arcs, respectively. Entries “n.m.”
indicate that execution was halted due to insufficient memory.

Table 1 shows the experiments results for stable formulations. Notice that for
k = 3, SCF presents better times then SEF. This fact can be explained by the
number of rows and non-zero elements in the coefficient matrix. SEF has more
rows because of constraints (8), that are written for all paths in P. However, for
k =4 and k = 5, the number of non-zero elements in SCF matrices considerably
increased, as well as loading times and solver times. This is due to the number
of elements in sets B; . that increases according to k and to the number of arcs
and vertices which are common to cycles in C. Table 1 also shows that, for all
k, there is a reduction in the number of rows, columns and non-zero elements in
SCEF. This happens because, in this formulation, 1) the path constraints (8) are
no longer required; 2) since the stability constraints are written in terms of y;;,
the number of columns and non-zero elements are reduced. Table 2 shows the
corresponding results for strongly stable formulations. The observations made
for Table 1 also hold here.

4 Conclusion

In this work, we presented three new integer formulations for modeling k-way
stable exchange problems. Computational tests were done with small instances
selected from [3]. Results show that the number of rows, columns and non-zero
elements of the coefficient matrix associated with each formulation increases
the loading time, the solver time and the memory usage with increasing values
of k. Furthermore, SCEF and SSCEF outperform the other formulations for
all instances, independently of k. These formulations do also request for less
memory.

References

1. David J. Abraham, Avrim Blum, and Tuomas Sandholm. Clearing algorithms for
barter exchange markets: Enabling nationwide kidney exchanges. In Proceedings
of the 8th ACM Conference on Electronic Commerce, EC 07, pages 295-304, New
York, NY, USA, 2007. ACM.

2. Péter Biré and Eric McDermid. Three-sided stable matchings with cyclic prefer-
ences. Algorithmica, 58(1):5-18, Sep 2010.

3. Miguel Constantino, Xenia Klimentova, Ana Viana, and Abdur Rais. New insights
on integer-programming models for the kidney exchange problem. Furopean Journal
of Operational Research, 231(1):57 — 68, 2013.

4. LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

5. Chien-Chung Huang. Circular stable matching and 3-way kidney transplant. Algo-
rithmica, 58(1):137-150, Sep 2010.

31

A comparison of matching algorithms for Kidney
Exchange Programs

Tiago Monteiro', Xenia Klimentova', Joao Pedro Pedroso':?, and Ana Viana'»?
L INESC TEC, Porto, Portugal
2 Faculdade de Ciéncias, Universidade do Porto, Porto, Portugal
3 ISEP - School of Enginnering, Polytechnic of Porto, Porto, Portugal
tiago.p.monteiro@inesctec.pt

Abstract. Kidney Exchange Programs (KEP) allow an incompatible
patient-donor pair, whose donor cannot provide a kidney to the respec-
tive patient, to have a transplant exchange with another pair in a similar
situation if there is compatibility.

In this paper we propose two matching algorithms that address the wait-
ing times of the pairs in a pool, by hierarchically maximizing the number
of transplants giving preference to the pairs that have waited longer. The
algorithms differ in the strategies used for finding feasible exchanges, as
follows. One algorithm runs periodically (e.g. every 3 month); the other
runs as soon as the pool is updated allowing for a new exchange. The two
algorithms are compared to similar approaches in the literature, that aim
at maximizing the number of transplants, through computational exper-
iments.

Keywords: Greedy hierarchical algorithm - Integer programming - Kid-
ney exchange programs - Simulation - Waiting time

1 Introduction

Kidney transplantation is currently the most effective treatment for patients with
end-stage renal disease, but finding a suitable kidney can be difficult. There are
two different sources for kidneys: from deceased donors and from living donors.
However, for the case of living donation the patient and willing donor often do
not meet compatibility requirements. This deadlock can be overcome by kidney
exchange programs (KEPs) that allow incompatible pairs to perform an exchange
between them if the donor in one pair is compatible with the patient in the other
pair and vice versa. This is the simplest case, resulting in the so called 2-cycle
exchange. However, the size of exchange cycles can be increased, following the
same reasoning.

Another possible organization for exchanges is a chain initiated by an altru-
istic donor, i.e. a donor with no associated patient that donates a kidney for
no return. The altruistic donor donates a kidney to a patient of the first pair
in the chain, his/her donor to the patient in the following pair and so forth.
The last donor in the chain can either donate to the deceased donors waiting

68

list or act as a bridge donor for the next matching. Due to the several practical
constraints the length of a cycle, and frequently of a chain have to be limited by
some constant k. In most programs k is set to 3.

KEPs are managed by central or local authorities that collect the incom-
patible pairs or altruist’s registrations and try to identify the exchanges that
optimize a given objective. The dynamics of the evolving matching pool, where
pairs enter and leave over time, is captured by several models. In [1] the au-
thors conduct simulations that aim at maximizing the number of transplants
performed under different time intervals between matches. In [2] authors study
how dynamic policies affect the waiting times. Three different settings of feasible
solutions are considered: only 2-cycles, 2 and 3-cycles, and a single unbounded
chain. Average waiting time is considered as a measure of efficiency; results show
that a greedy policy, where exchanges are done as soon as they are available, is
nearly optimal.

In our work we propose to address the waiting time of pairs in the pool
by hierarchically maximizing in the exchange the number of pairs that waited
longer. We develop two matching algorithms that aim at addressing this objec-
tive. Matchings are performed either periodically, or as soon as possible (similarly
to the work in [2]). We compare results with the cases where maximization of
the number of transplants is the only objective considered.

2 Kidney exchange pool and hierarchical waiting times’
optimization

We consider a dynamic KEP pool where pairs and altruistic donors appear over
time. The pool is represented by a directed graph G = (V, A). The set of vertices
V = PUN is composed by a set of incompatible pairs P and a set of altruistic
donors N. The set of arcs A represent compatibility between vertices: (i,7) € A
if the donor in vertex i € V' and the patient in vertex j € V' are compatible. A
feasible exchange is a set of disjoint cycles or chains, where cycles are formed
with vertices from set P and chains are initiated by an altruistic donor from set
N, followed by vertices from set P. We assume that the maximum size of cycles
and chains is limited by a value k (for the case of chains this limit is on the
number of vertices involved in a chain, including the altruistic donor). The last
donor in a chain donates to the deceased donor’s waiting list.

In this sections we describe the two matching approaches proposed. The
first one, presented in subsection 2.1, is referred in [2] as greedy. In this case
the matching algorithm is run whenever a new incompatible pair or an altruistic
donor joins the pool. In the second matching algorithm, subsection 2.2, exchanges
are found periodically, i.e., the algorithm is run periodically.

2.1 Greedy hierarchical algorithm

A myopic greedy algorithm was proposed in [2] in the following way: exchanges
are performed whenever a cycle or a chain is formed with an arriving altruistic

69

donor or incompatible pair. Possible ties are broken randomly, and the last donor
in the chain acts as an altruistic donor in the following matching. We adapt this
algorithm for our settings. Namely, we consider that the maximum length of
cycles and chains is the same (k), and choose (randomly in case of multiple
possibilities) the one with the largest number of transplants. Furthermore, we
assume that the last donor in a chain donates to the deceased donors waiting
list. We will refer to this version of the greedy algorithm as Greedy,qq-

Furthermore, we propose a new algorithm where instead of randomly choos-
ing a solution that maximizes the number of transplants, we aim at maximizing
the number of transplants while reducing patient’s waiting time in the pool.
Upon arrival of a pair or of an altruistic donor to the pool, the algorithm checks
if new cycles or chains are created with the new arrival. If they are, in case the
arrival promotes the creation of more than one cycle or chain, preference is given
to the one which contains the pair that has been in the pool for a longer time.
Ties are broken by considering the pair with the second longest waiting time,
and so forth. For the case of chains, the altruistic donor’s waiting time is only
considered after pairs are considered, i.e., when we have chains that only differ
in the altruistic donor. This case happens when there is more than one altruistic
donor in the pool and, upon a new pair arrival, more than one chain (initiated
by different altruistic donors, but containing exactly the same pairs) is created.
When a potential solution can be either a cycle or a chain and the solution only
differs in the fact of the chain having the altruistic donor, priority is given to
cycles. This case can happen when an unmatched altruistic donor is already in
the pool when a new pair arrives. We will refer to this version of the greedy
algorithm as Greedyw .

2.2 Hierarchical integer programming

In another approach we consider that the matching is performed periodically,
within given intervals of time (this value is set to 3 months in many countries).
In our work this problem is modeled and solved with integer programming (IP)
using the cycle formulation [3,4].

Considering the compatibility graph G = (V, A), let C be a set of cycles and
chains with at most k vertices in G. Let V(c) denote the set of vertices that
belong to cycle/chain ¢. By associating the variable z. for each ¢ € C, where .
= 1 if cycle/chain c is selected, 0 otherwise, we can write the following IP model:

Maximize Z WeLe (1a)
ceC(k)

Subject to: > om <1 VieV (1b)
c:ieV(c)
z. € {0,1} Ve € C(k). (1c)

The objective function (la) maximizes the weighted sum of transplants to be
performed and constraints (1b) ensure that each vertex is in at most one of the

70

selected cycles (i.e., each donor may donate, and each patient may receive only
one kidney). We will refer to this IP model as I P,

Similarly to the previous greedy algorithms, we will also consider an IP model
where the waiting times of the patients in the pool are addressed. For doing so,
for each matching period ¢ we first find exchanges that maximize the number
of pairs that waited for ¢ running periods. This can be done by replacing w, in
formulation (1a)-(1c) by wt, where w? is the number of pairs in cycle ¢ that have
been in the pool for ¢ matching periods. The optimal value of this problem is
denoted by v;. Then, in case there are multiple optimal solutions that provide
vy, we choose the ones that maximize the number of patients that waited for
t—1 periods, similarly, by considering coefficient w!~!, that will provide optimum
value v;_q, in the objective function (la) and imposing the following additional
constraints:

Z whr, > vf (2)

ceC

The process is repeated until ¢ = 0 by, adding to the IP problem constraints (2)

in each iteration, with w’ replaced by w!=!, ..., w?.

3 Computational analysis

In this section we validate and compare the four matching policies described
in section 2: Greedymas, Greedywr and I P4, I Py r. Computational results
were obtained for 100 instances, generated with the simulator developed in [5],
considering an horizon of 6 years. For the periodic matching algorithms, the
interval between matchings was set to 90 days (3 months). We assumed that
each patient has only one associated donor, and that pairs and altruistic donors
do only leave the pool when matched. Furthermore, if more than one pair or
altruistic donor enters the pool in the same day, we prioritize pairs that have
O-blood type patients and, if necessary, with a higher value of Panel-reactive
antibody (PRA). The maximum length of cycles and chains was set to 3.

Figure 1 illustrates the average waiting times within each period of 90 days
for: 1) matched pairs (lower part of the graph), 2) pairs remaining in the pool
after matching is performed (upper part of the graph) and, 3) all pairs in the pro-
gram (matched and not matched). As shown, average waiting times of matched
pairs for approaches that prioritize pairs that have been in the pool for a longer
time is higher when compared to the other algorithms (Greedy,ma. and IPqz)-
The reason for this is the fact, from all potential solutions, the selected solution
is the one that has pairs with longer waiting times. We can also observe that
at the beginning of the simulation the IP algorithms have higher waiting times.
That can be justified by the time pairs have to wait until the match day arrives.
The average waiting time for the pairs remaining in the pool is lower for ap-
proaches that take into account the waiting time. This can be justified by the
reason presented before. The same happens for the average time of pairs in the
program.

71

—*— Greedyyy —= Py ="%- Greedyun %" IPuy

500

AvgWT Unmatehed

300

200

100

AvgWT Pairs in pogram

AvgWT Matched pairs

L .
0 pe B G SETC LR (EEE So ity SERNRR R orN S e

0 4 10 15 20 23

Periods

Fig. 1. Average waiting times (AvgWT) for matched pairs, unmatched pairs in the pool
and all pairs in the program (matched and unmatched) using four different approaches.
Greedy approaches are represented by black lines and IP approaches by grey. Solid lines
represent algorithms that consider pairs’ waiting times and dashed lines represent those
that only consider the maximization of the number of transplants.

In table 1 we present the average number of matched pairs at the end of each
simulation year. We can observe that, at the end of the simulation, the appli-
cation of the Greedy algorithms result in less transplants when compared with
I P algorithms. Moreover, the approaches that consider waiting times present in
average a lower number of transplants when compared with those that neglect
waiting times.

Table 1. Average number of pairs matched at the end of each simulation for each

approach.
PP Year

1 2 3 4 5 6 Total

Greedywr 153.53 163.92 165.06 165.71 163.89 166.53 978.64
Greedymaz 154.1 164.74 166.06 166.21 164.67 167.38 983.16
1Pyt 159.88 164.84 165.07 165.77 163.79 165.92 985.27
IPnaa 163.32 166.4 166.48 167.03 165.48 168.49 997.2

72

4 Conclusions

In this work we simulate different matching policies in order to identify how
they affect pairs waiting time. We propose approaches based on greedy and
periodic matching and as evaluation criteria we consider the maximization of the
number of transplants and minimization of waiting times of patients. Preliminary
computational results show that average waiting times of unmatched patients
are reduced for approaches that consider pairs waiting time. This is achieved
by slightly sacrificing the total number of transplants performed and increasing
average waiting times of matched pairs. As future work we intend to implement
a lexicographic procedure that first maximizes the number of transplants and,
in a second stage, select the solution involving the pair(s) with longer waiting
times. Furthermore, we intend to extend computational results by considering
graphs of different density and different frequencies for pair and altruistic donor’s
arrival.

Acknowledgements This work is financed by the ERDF European Regional Devel-
opment Fund through the Operational Programme for Competitiveness and Interna-
tionalisation - COMPETE 2020 Programme, and by National Funds through the Por-
tuguese funding agency, FCT - Fundacao para a Ciéncia e a Tecnologia, within project
“mKEP - Models and optimisation algorithms for multicountry kidney exchange pro-
grams” (POCI-01-0145-FEDER-016677), by FCT project SFRH/BPD/101134/2014
and by COST Action CA15210, ENCKEP, supported by COST (European Coopera-
tion in Science and Technology) — http://www.cost.eu/.

References

1. M. Beccuti, V. Fragnelli, G. Franceschinis, and S. Villa. Dynamic simulations of
kidney exchanges. In Bo Hu, Karl Morasch, Stefan Pickl, and Markus Siegle, edi-
tors, Operations Research Proceedings 2010, pages 539—-544, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

2. R. Anderson, I. Ashlagi, D. Gamarnik, and Y. Kanoria. Efficient dynamic barter
exchange. Operations Research, 65(6):1446-1459, 2017.

3. D.J. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for Barter exchange
markets: Enabling nationwide kidney exchanges. In: Proceedings of the 8th ACM
conference on Electronic commerce, June 13-16, pages 295-304, 2007.

4. M. Constantino, X. Klimentova, A. Viana, and A. Rais. New insights on integer-
programming models for the kidney exchange problem. European Journal of Oper-
ational Research, 231(1):57-68, 2013.

5. N. Santos, P. Tubertini, A. Viana, and J. P. Pedroso. Kidney exchange simulation
and optimization. Journal of the Operational Research Society, 68(12):1521-1532,
2017.

73

	Costa.pdf
	Monteiro.pdf
	A comparison of matching algorithms for Kidney Exchange Programs

